
VBInt 1.0

A Visual Basic DLL for the implementation
of DOS/BIOS interrupts and functions.

By: Rick Esterling and Karl Peterson
Copyright 1994, All Rights Reserved

*** WARNING ***
Consider yourself forewarned: These functions give you access to DOS and BIOS
interrupts and services. These "functions", in case you are unfamiliar with them, include,
but are not limited to, functions like "Format Disk Track", "Initialize Fixed Disk Table", ad
naseum. Does that make you nervous? It should. Simply entering one single binary digit
incorrectly can cause the complete and irrecoverable loss of all data on your hard drive. If
you use this DLL, you use it with the complete and absolute understanding that you and
you only are 100% utterly responsible for any damage that may be incurred as a result of
having used this library. The author will not be held responsible for any ramifications
suffered as a result of using the VBInt library. You use VBInt entirely at your own risk, no
exceptions.

VBINT.DLL is FREEWARE and may be distributed with your applications without runtime fees.

All other files, if distributed, must be distributed in whole as one package. The package includes:

VBINT.DLL VBINT.BAS VBINT.WRI
INTDEMO.MAK INTDEMO.FRM INTDEMO.BAS
INTSUPT.BAS INTDEMO.EXE

Installing and Using VBINT.DLL
VBINT.DLL should be placed in the Windows system directory on any computer on which
programs that use VBINT.DLL will be running. This is usually C:\WINDOWS\SYSTEM.
VBINT.BAS should be loaded into any VB project in which you intend to call the VBINT library.

Requirements
You will need a reference manual that describes the services and explains how each is invoked.
The user is expected to have a working knowledge of DOS interrupts and at least a basic
understanding of how they are implemented. You will also need to know how to do binary
manipulations and bitfield operations, some of which will be illustrated in this document and some
of which are demonstrated in the demo included with VBINT.ZIP. VBInt is not meant to be used
as a tutorial by which these concepts can be taught. It is provided for use by experienced
programmers who already know about DOS interrupts and how to use them, but who could not
do so in VB until now due to the inherent limitations of the Visual Basic programming
environment.

Defining VBInt
Data is exchanged between Visual Basic and the DOS/BIOS services by means of a VB User
Defined Type (UDT) called VBREGS. The UDT mirrors the actual registers that are found in the
Intel 80-x series of microprocessors (8088, 80286, 80346, 80486, et al). Three functions
comprise the VBInt library: VBInt(), GetSegment() and GetOffset(). The UDT and function
declarations are defined in VBINT.BAS as follows:

Type VBREGS
 AX As Integer ' These first four are called "general purpose" registers
 BX As Integer
 CX As Integer
 DX As Integer
 SI As Integer ' These two are called the "index" registers
 DI As Integer
 cFlag As Integer ' The carry flag
 DS As Integer ' These are two of the four data segment registers. The other two
 ES As Integer ' (CS and SS) are not used by the DOS services or by VBInt.
End Type

Declare Function VBInt% Lib "VBINT.DLL" Alias "#1" (ByVal serviceNr%, inRegs As VBREGS,
 outRegs As VBREGS)
Declare Function GetSegment% Lib "VBINT.DLL" Alias "#2" (ByVal stringVar$)
Declare Function GetOffset% Lib "VBINT.DLL" Alias "#3" (ByVal stringVar$)

VBInt(), as shown above, receives three parameters:
1 - The service being requested
2 - The VBREGS UDT that contains the input register settings
3 - The output VBREGS UDT that will reflect the status of the registers after the

 after the interrupt is generated. Note that the second and third parameters can
 be, and in fact usually are, the same variable.

GetSegment() and GetOffset() receive one parameter each; namely, the variable-length string
variable for which the segment or offset address is being derived. See the section below titled
"Character Strings and VBInt".

Calling a DOS Function
The best thing to do first is to jump right into an example. The question I am asked most often by
VB programmers is how to determine the amount of free disk space available on any given drive.
VB does not have a function for this and, in fact, neither does the Windows API. The DOS
services, however, do include an internal function for deriving this information and for gathering
other useful information about the disk as well.

Interrupt 21h/36h is an extended DOS function called "Get Disk Free Space". To use this
function, you simply invoke service 21h with 36h loaded into the AH register. The logical drive
number of the drive being queried is loaded into the DL register, or 0 can be used to query the
current default drive, and then Interrupt 21 is requested. Consider the following example:

 Function GetFreeSpace& (driveNr%)
 Dim regs As VBREGS, rtn%

 regs.ax = &H3600 ' Set AH = 36
 regs.dx = driveNr% ' Set DL = logical drive number (0 = default, 1 = "A", etc)
 rtn% = VBInt(&H21, regs, regs) ' Generate DOS interrupt
 If rtn% Then
 GetFreeSpace& = 0& ' An unknown error occured
 ElseIf regs.ax = -1 Then
 GetFreeSpace& = -1 ' Drive not ready error
 Else
 GetFreeSpace& = CLng(regs.ax) * CLng(regs.bx) * CLng(regs.cx)
 End If
 End Function

As you can see, the AX member of the VBREGS UDT was set to 3600h and the DX member was
set to the value that was passed to this function via the driveNr% variable. The interrupt was
generated by calling VBint(), passing &H21 (21h) as the service requested. DOS reference
manuals tell us that this service returns the following information:

AX = sectors-per-allocated unit (cluster)
BX = number of available clusters
CX = number of bytes per sector
DX = total number of clusters

So, to ascertain the amount of disk space remaining, you start by multiplying the number of
sectors-per-cluster (AX) by the number of available clusters (BX). So far, you have the total
number of sectors available. To figure out how many bytes that equates to, multiply that value
(AX * BX) by the number of bytes per sector (CX). In other words:

AX * BX * CX = total number of available bytes

In the sample above, I converted each paramater to a long before multiplying to prevent VB

overflow errors.

That's all there is to it!

Some other useful calculations can be made using the same information provided by this
function:

Print CLng(regs.ax) * CLng(regs.cx) ' Bytes per cluster
Print CLng(regs.ax) * CLng(regs.cx) * CLng(regs.dx) ' Total disk space
Print (regs.bx * 100) / regs.dx ' Percentage of free space

Error Handling
As you have seen in the declaration, VBInt() returns an integer. Please note that this value (the
value returned from VBInt()) is always the exact same value as is held by the cFlag member of
VBREGS which represents the carry flag in the registers. In fact, when VBInt() returns control to
your program, it literally returns the value of VBREGS.cFlag itself. If the carry flag is set (i.e.,
non-zero), it's usually a very good indication that some kind of error occured. It is very important
to realize, however, that each DOS Service has its own way of communicating to you that an
error has been detected and that the carry flag is not always the only means by which that
occurence is relayed to you.

To exemplify this point, try the example above again but this time send the function a 1 as its
parameter (driveNr%) but do not put a disk in drive "A". You will discover that the program
executes, the light for drive A comes on momentarily, and then the function just returns control to
your program. Normally, DOS, and especially Windows, choke when you do something like
attempting to read a floppy drive when there's no disk inserted. But in this example not only did
nothing dramatic happen, but VBInt() returned a zero (and, in fact, the carry flag is not set)
indicating that an error did not occur! How can this be? Some functions set the carry flag to
indicate an error, some will just put an error code into one of the registers (usually AX, but not
always) while leaving the carry flag untouched. Some do both! The important thing to remember
is that each routine has its own way of communicating errors to you and that even if a specific
function does not use the carry flag to indicate an error, it is still a good idea to check the carry
flag anyway since it might be set if an error occurs that even DOS itself does not understand.

So how are you supposed to find out there's no disk in drive A in the example above? The DOS
manuals tell us that if DOS realizes that this service has failed (as would be caused by the lack of
a disk in the drive being queried), then DOS will load FFFFh into the AX register. Since VB does
not support unsigned 16-bit integers, this same number appears as "-1" in VB when represented
as an VB integer. In a 16 bit register, the two are equal: FFFFh = -1. Therefore, to find out if this
interrupt failed, you need to check the value of the AX register when VBInt() returns and make
sure it is not -1. Why, then, bother checking the return value from VBInt (which is the same thing
as checking the cFlag member) since this service does not use the carry flag to indicate an error?
For a very important reason: If your call to VBInt was set up incorrectly and a critical error
occured, one that might have nothing to do with the "Get Disk Free Space" service itself, then
obvioulsy the AX register may or may not have been loaded with a proper error code. In this
situation, the carry flag is how you would (hopefully) find out that something went wrong.
Therefore, a general rule can be defined: Always check the carry flag, even if it is not the normal
means by which a service is supposed to indicate an error. Also, of course, check whatever
means the service provides for error handling.

Character Strings and VBInt
There are basically two types of DOS interrupts that you will be requesting: (1) Those that work
strictly with numbers, like the example shown above ("Get Disk Free Space"); and (2) Those that
require character strings such as is necessary to rename or delete a file.

From DOS' point of view, a character string variable is nothing more than a number (a "pointer")
that represents the location in memory where a string starts. Once DOS knows the address of a
string, it starts there and keeps reading memory contiguously until an ASCII 0 is located, which
acts as a terminating character for strings much in the same way as a period indicates the end of
this sentence. When DOS needs to know the address of a string, it looks in two registers: one of
the segment registers for the first part of the address, and one of the general purpose or index
registers for the second part. The first of these two parts is called the "segment" address and the
second is called the "offset" address. The segment address narrows down the location of the
string to a 64K block of memory while the offset address specified where inside that 64K block
the string is actually located.

It is very important to realize that Visual Basic handles string variables in a very unique way. In
languages like assembly and C/C++, the programmer has to do quite a bit of work just to allocate,
maintain, and deallocate string variables, particularly under Windows. To make string variables
easier for the programmer to manipulate in Visual Basic, a unique internal string-handling routine
was devised that is, unfortunately, incompatible with functions written in any other language. As
such, special consideration has to be made to pass string variables between Visual Basic
programs and functions in DLLs that were written in other languages.

First of all, VB itself has two types of string variables: fixed-length and variable-length. Fixed-
length VB string variables are not compatible with VBInt and will not work if used. An
example of a fixed-length variable declaration follows:

Dim stringVar As String * 100 ' Declares a fixed-length string variable capable of
' holding up to 100 characters
' This declaration is not compatible with VBInt

Variable-length strings, on the other hand, are compatible with VBInt, but they must be buffered or
"allocated" if they are to receive information just as you would be required to do if you were
passing a string variable to any other DLL. An example of declaring and allocating a variable-
length string variable follows:

Dim stringVar As String ' Declare a variable-length string, but no memory
 or: Dim stringVar$ ' has been allocated yet

stringVar$ = String$(100, 0) ' Now memory has been allocated for 100 characters.

What's the all-important difference between fixed- and variable-length string variables in VB?
Since VB string variables are not compatible with other languages, the Visual Basic kernel
(VBRUN300.DLL) automatically intercepts your string variables whenever they are passed to a
DLL and each is converted it to a variable that is compatible with the standard ASCII-0 terminated
string thereby making the variable compatible with the DLL. With variable-length string variables,
VB assumes that you've done all the of necessary allocating of memory and simply passes to the
DLL the memory address of your variable. Fixed-length string variables, on the other hand, are
not passed directly to DLLs. When the VB kernel realizes a fixed-length string is being passed to
a DLL, VB makes a copy of the variable; i.e., a temporary "buffer", and this buffer is what is
actually passed to the DLL. When the DLL returns control to the VB application, the VB kernel
intervenes again and copies the contents of the buffer back into the VB fixed-length string and the
temporary buffer is deallocated and deleted.

When you need to pass a character string to VBInt, you do so not by passing the string itself as
you would within a VB program or even with a DLL; rather, you determine the segment address
and offset address of the string and load these two values into the appropriate members of the
VBREGS UDT according to the service being requested. Then, just as you would with a "simple"
interrupt, you pass the UDT to VBInt() which loads the actual registers with the address specified
in the UDT and generates the interrupt. How do you get the address of the string variable? That
is the purpose of the other two functions in VBINT.DLL.

GetSegment() ' Returns the segment address of a string variable
GetOffset() ' Returns the offset address of a string variable

Obviously, it would do no good to obtain the segment and offset address for a variable that is only
a temporary buffer, and it is for this reason that fixed-length string variables cannot be used with
VBInt. By the time you get the address back from GetSegment() or GetOffset(), the address will
no longer be valid. Consider this example of a function that will not work:

Sub BadExample()
 Dim stringVar As String * 100 ' Declare a fixed length string of 100 characters
 Dim segAddress%, offAddress% ' Declare variables to hold address

 segAddress% = GetSegment(stringVar)
 . . .

Already, we can see the problem. When stringVar, a fixed-length variable, is passed to
GetSegment(), the VB kernel intervenes as described above by creating a temporary buffer and
passing the address of the temporary buffer to GetSegment(); the address of stringVar itself
does not get passed and is completely hidden away somewhere inside the VB kernel. Still,
GetSegment() does its job by returning the segment address of the variable that was passed to it
(the temporary buffer, as it turns out) which is assigned to segAddress% when GetSegment()
returns. The action of GetSegment() returning control to the VB program triggers the automatic
intervention of the VB kernel again, which copies the contents of the temporary buffer, whatever
they may be, into stringVar and then the temporary buffer is deallocated and deleted. The
problem, of course, is that segAddress% now points to a location in memory where the temporary
buffer used to be which, of course, has since been deleted by the VB kernel. This address has
nothing whatsoever to do with the address of stringVar. In fact, since the temporary buffer has
been deleted, segAddress% doesn't point to anything useful whatsoever and if referenced, stands
a very good chance of crashing the entire Windows operating environment!

When a variable-length string variable is passed to a DLL, on the other hand, the VB kernel still
intervenes, but it does not create a temporary buffer. It passes the actual address of the VB
variable to the DLL. With that in mind, consider the following code:

 Sub Example()
 Dim stringVar$, segAddress% ' Declare a variable-length string variable

' and an integer
 stringVar$ = String(100, 0)
 segAddress% = GetSegment(stringVar$) ' Actual address of stringVar is passed to

' GetSegment()
 Print Hex$(segAddress%) ' Prints segment address of stringVar in hex
End Sub

The information above certainly requires an advanced understanding of how string variables are
referenced by VB, DLLs and even DOS itself. If you are not interested in all of these details, that
is quite alright as long as remember the rule: Fixed-length string variables cannot be used with
VBInt; variable-length string variables can.

Finally, there are two more important things to remember when passing string variables to any
DLL functions including the functions in VBINT.DLL: (1) If the DLL is going to place a string into
the variable passed by you, then you as the VB programmer are responsible for making sure that
the variable is large enough to accept the maximun number of characters that might be loaded
into your variable. DLLs do not allocate space for your variable before inserting characters into it
- you must do it prior to the variable being passed to the DLL. The example above shows 100
bytes of memory being allocated to stringVar. (2) If the DLL is going to read characters out of
your variable, then you must ensure that you terminate the string with an ASCII 0. If you are
sending a variable to function and you send it ByVal, then VB will do this for you automatically.
With VBInt, however, you will be defining a string variable, placing data into this variable and then
sending the segment/offset address of the variable to VBInt so that the string can be located and
evaluated. Obviously, since only the segment/offset address, stored in an UDT nonetheless, is
actually being passed to VBInt, there is no possible way that VB could understand what you are
doing so there is no way VB will jump in and assist you by terminating your strings. Therefore,
you must do it manually lest DOS continue reading characters from memory until some random
ASCII 0 is located, if ever. This is performed easily enough:

myPath$ = "C:\WINDOWS" & Chr$(0) ' How to terminate a string variable

Applying everything that is discussed above, we are ready to call a DOS Service that uses a
character string. The following example invokes the extended DOS service, "Rename File" (Int
21h/56h) which uses two character strings. This service is much better than the DOS rename
command insomuch as it, like VB's Name command, allows you to specify different subdirectories
as you rename the file. This gives you the ability to logically move a file across subdirectories
without performing a physical copy as long as the file remains on the same device. In the event
of an error, this service places an error code in the AX register (see source code) and it sets the
carry flag as well.

 Sub RenameFile (origFilename$, newFilename$)
 Dim regs As VBRegs, rtn%
 ' The two parameters received by this function must be variable-length string variables

 ' Ensure the two variables received by this function are properly terminated with ASCII 0
 If Instr(origFilename$,Chr$(0)) = 0 Then
 origFilename$ = origFilename$ & Chr$(0)
 End If
 If Instr(newFilename$,Chr$(0)) = 0 Then
 newFilename$ = newFilename$ & Chr$(0)
 End If

 regs.ax = &H5600 ' DOS service requested
 regs.ds = GetSegment(origFilename$) ' Get segment address of first input string
 regs.dx = GetOffset(origFilename$) ' Get offset address of first input string
 regs.es = GetSegment(newFilename$) ' Get segment address of second input string
 regs.di = GetOffset(newFilename$) ' Get offset address of second input string

 rtn% = VBInt(&H21, regs, regs) ' Generate the interrupt
 If rtn% <> 0 Then ' Check return value (carry flag)
 Select Case regs.ax ' Error handling
 Case &H2
 MsgBox "File not found: " & origFilename$, MB_ICONEXPLANATION, "VBInt Error"
 Case &H3
 MsgBox "Path not found", MB_ICONEXPLANATION, "VBInt Error"
 Case &H5
 MsgBox "Access denied", MB_ICONEXPLANATION, "VBInt Error"

 Case &H17
 MsgBox "Not same device", MB_ICONEXPLANATION, "VBInt Error"
 Case Else
 MsgBox "An unknown error has occured: " & regs.ax, MB_ICONEXPLANATION, "VBInt
 Error"
 End Select
 Else
 MsgBox origFilename$ & " has been renamed to " & newFilename$ ' Success!
 End If
 End Sub

Binary Manipulations from VB
This section has very little to do with VBInt specifically and more to do with how binary operations
are performed in VB; i.e., AND, OR, Shift Right, etc. An effective way to demonstrate these
operations is with the basic DOS service that retrieves the current system time, Int 21h/2Ch.

The "Get Time" function returns the current system time in the registers specified below:
CH - Hours
CL - Minutes
DH - Seconds
DL - Hundredths of seconds

Given that information, here is how the values of those registers can be determined in VB:

Sub GetTime ()
 Dim regs As VBRegs, rtn%, cTime$

 regs.ax = &H2C00 ' Load 2Ch into AH
 rtn% = VBInt(&H21, regs, regs) ' Generate the interrupt

 cTime$ = Format$((regs.cx And &HFF00) \ 256, "00")
 cTime$ = cTime$ & ":" & Format$((regs.cx And &HFF), "00")
 cTime$ = cTime$ & ":" & Format$((regs.dx And &HFF00) \ 256, "00")
 cTime$ = cTime$ & "." & Format$(regs.dx And &HFF, "00")
 Print cTime$
End Sub

As you can see, this service requires that we evalute the hi and lo bytes of the CX and DX
registeres independently. Normally, a bitwise Shift Right operator (>>) would be used to perform
such a task, but VB does not have shift operators. A shift to the right, however, is nothing more
than a little base 2 division, so we can easily replicate the same functionality. To determine the
current hour, we are only interested in the hi byte of the CX register. That means we can get rid
of the lo byte by And-ing it with 0:

HiByte% = regs.cx And &HFF00 ' Zeroizing the lo byte of CX

Now we have the value of just the hi byte, but it cannot be evaluated yet since it is still positioned
over to the left. We need to shift everything to the right by eight bits in order to get a true
representation of the hi byte value. Two to the eighth power is 256, so all we have to do is divide
the value by 256 and we will have effected the same thing as shifting right eight bits.

HiByte% = HiByte% \ 256

Then use VB's Format() function to pad zeros in where there might be a single digit number:

Print Format$(HiByte%,"00") ' Prints the hour portion of the current time.

Now, we have the printed the true, unadulterated value of the hi byte of CX. To get the value of
the lo byte, we simply And the value with &H00FF. No shift is necessary.

LoByte% = regs.cx And &HFF ' Leading zeros are assumed (&H00FF = &HFF)

INTDEMO
So far, I have not really shown you anything that demonstrates the real usefulness and power of
VBInt and the massive amount of information that is opened up to you by having gained access
to the DOS/BIOS services and functions. I have used simple and even redundant examples,
chosen simply because I felt they would clearly illustrate the functionality of VBInt regardless of
how irrelevant the code itself may be. If you are starting to feel like this is all a lot of work with
only a little payback, then one look at Karl Peterson's sample program, INTDEMO, will change
your mind.

INTDEMO is a perfect example of the type of system information and program functionality that is
available to you as a VB programmer when armed with VBINT.DLL. There is far too much magic
in this demo for me to explain here. Rather, I recommend printing the source code and studying
the operation of each function that is demonstrated.

Among other things, one truly amazing feat comes out of Karl's demo. Remember that a string
variable is nothing more than a pointer (an address) to a contiguous block of memory that is
capable of storing ASCII characters. UDTs, declared correctly, are really the same thing. Karl
exploits this fact by aliasing GetSegment() and GetOffset() so that they receive as a parameter a
pointer to a UDT instead of a pointer to string variable. The address of the UDT is then passed to
VBInt to collect information about the files that are being scanned (date, time, size, etc), which
subsequently fills up the members of the UDT with the proper information, ALL IN ONE CALL!
Specifically, check out the declarations for UDTSegment() and UDTOffset(), the UDT called
DTAType, and the functions called FileFindFirst() and FileFindNext(), all of which may be found in
INTDEMO.BAS.

I have singled out that particular section of Karl's demo because of its ingenious implementation,
but the fact of the matter is the that all of the source code for INTDEMO is a must for your
perusal. Furthermore, despite the enormous functionality that is illustrated by the entire demo, it
serves only as a preliminary example of what can be accomplished with VBInt. The demo
contains only a fraction of the types of operations that can be performed.

Compatibility and Limitations
VBInt has been tested on Windows 3.0, Windows 3.1 and Windows NT. The DLL is compatible
with all three, but some of the DOS Services themselves may be only partially implemented on
each platform. Factors such as whether Windows is running in Enhanced or Standard mode, or
having Windows configured to use 32-bit disk access, can also affect the operation of specific
DOS services. "Undocumented" services are not specifically supported by VBInt although some
of them may work. Truename (Int 21h/60h), for example, does not.

Several DOS interrupts and functions are not supported in the Windows environment as listed
below:

Interrupt Description
20h Terminate Program
25h Absolute Disk Read
26h Absolute Disk Write
27h Terminate and Stay Resident
21h/00h Terminate Process
21h/0Fh Open File with FCB
21h/10h Close File with FCB
21h/14h Sequential Read
21h/15h Sequential Write
21h/16h Create File with FCB
21h/21h Random Read
21h/22h Random Write
21h/23h Get File Size
21h/24h Set Random Record Number
21h/27h Random Block Read
21h/28h Random Block Write

The following interrupts and functions are "partially" supported in the Windows environment since
they behave differently in protected mode than they do in real mode. Please refer to the
Windows SDK if you have any questions regarding the usability of any of these
interrupts/functions:

Interrupt Description
21h/25h Set Interrupt Vector
21h/35h Get Interrupt Vector
21h/38h Get/Set Current Country Information
21h/4402 - 4405h Send/Receive Control Data
21h/440Ch Generic IOCTL for Character Devices
21h/6501-6506h Get Extended Country Information

Technical Support
If you are having a problem with VBInt, the best means by which to obtain help or technical
advice is to leave a message for either Karl or me in Section 5, "Programming", of the MSBASIC
forum on Compuserve (see credits for CIS addresses). Karl and I frequent this forum daily and
are as quick to offer our expertise as we are to receive the expertise of others.

We do ask you to remember that VBInt is freeware. We are not guaranteeing support and we
cannot promise results. A lot of work has already gone into VBInt and we truly hope that others
can benefit from this effort. We are anxious to help those who are anxious to help themselves,
but this project does not pay the bills so we cannot promise anything. Generally, we will help you
if we can - if for some reason we cannot, we hope you will understand. If you don't understand,
then delete VBINT.DLL and pretend like all of this never happened.

Technical Specifications
VBINT.DLL is written in Visual C++.
DOS Protected Mode Interface (DPMI) is used extensively to implement the DOS interrupts via
16-bit inline assembly.

Using VBInt With C/C++
There is no great advantage to using VBInt with C/C++ since programs written in C/C++ can
access the registers and interrupt services directly. If, however, you like the implementation of
this DLL and want to use it in your C/C++ programs, the following header information is provided.

 struct VBREGS { // Note that this structure is not compatible with any of the
 int ax,bx,cx,dx; // register structures already defined in DOS.H
 int si,di;
 int cflag;
 int ds,es;
 };

 int VBInt(int serviceNr, VBREGS FAR* VBinreg, VBREGS FAR* VBoutreg);
 UINT GetSegment(LPSTR lpszVar);
 UINT GetOffset(LPSTR lpszVar);

Credits
VBINT.DLL
Rick Esterling is a computer scientist for Boeing Information Services, contracted to NASA at
Marshall Space Flight Center in Huntsville, AL. He primarily uses Visual C++ and Visual Basic to
develop Windows client/server applications and utilities. He also uses C, C++, and Clipper 5.2 to
develop applications and utilities for the DOS environment. He enjoys golf, flying and playing
gigs (keyboards/vocals) in his classic rock-and-roll band in and around Huntsville, where he lives
with his girlfriend of two years. Rick can be contacted at:

Rick Esterling
Three Cruse Alley
Huntsville, AL 35801

Internet: rick.esterling@msfc.nasa.gov
CIS: 7332,702

INTDEMO.EXE
Karl Peterson is a Senior Technical Transportation Planner/GIS Analyst for the Southwest
Washington Regional Transportation Council. Cartography and spatial analysis of demographic,
economic and natural data, as well as being the general PC support person and network
administrator for the agency keep him busy. Programming has always (20 years now with
Basic!) been a "hobby", and he tries to fit it into the work program whereever it can be "justified".
Karl lives with his wife, two sons, and mongrel border collie in Vancouver less than 25 air miles
from Mt. St. Helens. Besides writing INTDEMO, Karl was also instrumental in specifying the
implementation of the VBINT library itself. Karl can be contacted at:

Karl Peterson
Regional Transportation Council
1351 Officers' Row
Vancouver, WA 98661

CIS: 72302,3707

